lim(x→0)=(1/x^2-cot^2x)

3个回答

  • lim(x→0)=(1/x^2-cot^2x)

    =lim(x→0)=(1/x^2-1/tan²x)

    =lim(x->0)(tan²x-x²)/x²tan²x

    =lim(x->0)(tan²x-x²)/x^4

    =lim(x->0)(tanx+x)(tanx-x)/x^4

    =lim(x->0)(tanx+x)/x*lim(x->0)(tanx-x)/x³

    =2lim(x->0)(sec²x-1)/3x²

    =2lim(x->0)(tan²x)/3x²

    =2/3

    lim(x→∞)=[(2+x)e^(1/x)-x]

    令x=1/t

    原式=lim(t->0)[(2+1/t)e^t-1/t]

    =lim(t->0)[(2t+1)e^t-1]/t

    =lim(t->0)[(2t+1)e^t+2e^t]/1

    =1+2

    =3