已知数列{a n }的首项a 1 =2,其前n项和为S n ,当n≥2时,满足a n -2 n =S n-1 ,又b n

1个回答

  • (I)由题意知得,a 1=2,a 2-2 2=S 1=a 1=2,∴a 2=6.

    n≥2时,a n-2 n=S n-1,a n+1-2 n+1=S n

    两式相减得 a n+1-a n-2 n=a n

    即 a n+1=2a n+2 n(n≥2)

    于是

    a n+1

    2 n+1 =

    a n

    2 n +

    1

    2

    即 b n+1-b n=

    1

    2 n≥2

    又b 1=

    a 1

    2 =1, b 2 =

    a 2

    2 2 =

    3

    2 ,b 2-b 1=

    1

    2 ,

    所以数列{b n}是首项为1,公差为0.5的等差数列.

    (II)由(I)知, b n =1+(n-1)×

    1

    2 =

    n+1

    2 ,

    a n=b n2 n=(n+1)2 n-1

    又n≥2时a n-2 n=S n-1,S n-1=(n-1)2 n-1

    ∴S n=n•2 n

    ∴T n=1×2 1+2×2 2+3×2 3+…+n×2 n,…①

    2T n=1×2 2+2×2 3+3×2 4+…+n×2 n+1…②

    ②-①可得

    T n=2 n+1-2-n×2 n=(n-1)2 n+1+2.