(I)由题意知得,a 1=2,a 2-2 2=S 1=a 1=2,∴a 2=6.
n≥2时,a n-2 n=S n-1,a n+1-2 n+1=S n,
两式相减得 a n+1-a n-2 n=a n
即 a n+1=2a n+2 n(n≥2)
于是
a n+1
2 n+1 =
a n
2 n +
1
2
即 b n+1-b n=
1
2 n≥2
又b 1=
a 1
2 =1, b 2 =
a 2
2 2 =
3
2 ,b 2-b 1=
1
2 ,
所以数列{b n}是首项为1,公差为0.5的等差数列.
(II)由(I)知, b n =1+(n-1)×
1
2 =
n+1
2 ,
a n=b n2 n=(n+1)2 n-1,
又n≥2时a n-2 n=S n-1,S n-1=(n-1)2 n-1,
∴S n=n•2 n
∴T n=1×2 1+2×2 2+3×2 3+…+n×2 n,…①
2T n=1×2 2+2×2 3+3×2 4+…+n×2 n+1…②
②-①可得
T n=2 n+1-2-n×2 n=(n-1)2 n+1+2.