"过平面α外一点P有且只有一个平面β和平面α垂直"显然不对,课本上的定理:过平面α外一点P有且只有一条直线与α垂直.但是过这条直线有无数个平面,都与α垂直.
直线L∥平面α ,L⊥平面β,则α⊥β. 对,因为直线L∥平面α,所以平面α内存在一直线与L平行,又由于L⊥平面β,所以这条直线也垂直于平面β,所以α⊥β.
"过平面α外一点P有且只有一个平面β和平面α垂直"显然不对,课本上的定理:过平面α外一点P有且只有一条直线与α垂直.但是过这条直线有无数个平面,都与α垂直.
直线L∥平面α ,L⊥平面β,则α⊥β. 对,因为直线L∥平面α,所以平面α内存在一直线与L平行,又由于L⊥平面β,所以这条直线也垂直于平面β,所以α⊥β.