(1)1.因为BD平分∠ABC,∠ABC=∠ACB
所以∠DBC=1/2∠ABC
由三角形外角公式得:∠ADB=∠ADB+∠ACB=3/2∠ABC
由对顶角公式:∠CDE=∠ADB=3/2∠ABC=36
因为∠FCM=∠ABC+∠F 所以∠F=∠FCM-∠ABC
而CE平分∠ACM所以∠FCM=1/2(180-∠ACB)=90-1/2∠ABC
所以∠F=90-1/2∠ABC-∠ABC=90-3/2∠ABC=54
2.同1:∠CDE=3/2∠ABC=48
∠F=90-3/2∠ABC=48
3.由1、2得∠F+∠CDE=90
(2)结论:∠F+∠CDE=90
证明:由三角形外角公式和对顶角公式得:
∠CDE=∠ADB=∠DBC+∠ACB=1/2∠ABC+∠ABC=3/2∠ABC
∠F=∠FCM-∠ABC=1/2(180-∠ACB)-∠ABC=90-3/2∠ABC
所以∠F+∠CDE=90-3/2∠ABC+3/2∠ABC=90
即∠F+∠CDE=90 可得等式成立于∠BAC的大小无关