△ABC中,∠ABC=∠ACB,BD的延长线交外角∠ACM的平分线于E.直线CE与直线AB交于F △ABC中,∠ABC=

1个回答

  • (1)1.因为BD平分∠ABC,∠ABC=∠ACB

    所以∠DBC=1/2∠ABC

    由三角形外角公式得:∠ADB=∠ADB+∠ACB=3/2∠ABC

    由对顶角公式:∠CDE=∠ADB=3/2∠ABC=36

    因为∠FCM=∠ABC+∠F 所以∠F=∠FCM-∠ABC

    而CE平分∠ACM所以∠FCM=1/2(180-∠ACB)=90-1/2∠ABC

    所以∠F=90-1/2∠ABC-∠ABC=90-3/2∠ABC=54

    2.同1:∠CDE=3/2∠ABC=48

    ∠F=90-3/2∠ABC=48

    3.由1、2得∠F+∠CDE=90

    (2)结论:∠F+∠CDE=90

    证明:由三角形外角公式和对顶角公式得:

    ∠CDE=∠ADB=∠DBC+∠ACB=1/2∠ABC+∠ABC=3/2∠ABC

    ∠F=∠FCM-∠ABC=1/2(180-∠ACB)-∠ABC=90-3/2∠ABC

    所以∠F+∠CDE=90-3/2∠ABC+3/2∠ABC=90

    即∠F+∠CDE=90 可得等式成立于∠BAC的大小无关