(1)证明:当n=1时,a1=S1=(m+1)-ma1,解得a1=1.
当n≥2时,an=Sn-Sn-1=man-1-man.
即(1+m)an=man-1.
∵m为常数,且m>0,∴
an
an−1
=
m
1+m
(n≥2)
∴数列{an}是首项为1,公比为
m
1+m
的等比数列.
由(1)得,q=f(m)=
m
1+m
,b1=2a1=2.
∵bn=f(bn−1)=
bn−1
1+bn−1
,
∴
1
bn
=
1
bn−1
+1,即
1
bn
−
1
bn−1
=1(n≥2).
∴{
1
bn
}是首项为
1
2
,公差为1的等差数列.
∴
1
bn
=
1
2
+(n−1)•1=
2n−1
2
,即bn=
2
2n−1
(n∈N*).
(3)证明:由(2)知bn=
2
2n−1
,则bn2=
4
(2n−1)2
.
所以Tn=b12+b22+b32++bn2=4+
4
9
+
4
25
++
4
(2n−1)2
,
当n≥2时,
4
(2n−1)2
<
4
2n(2n−2)
=
1
n−1
−
1
n
,
所以Tn=4+
4
9
+
4
25
++
4
(2n−1)2
<4+
4
9
+(
1
2
−
1
3
)+(
1
3
−
1
4
)++(
1
n−1
−
1
n
)=
40
9
+
1
2
−
1
n
<
89
18
.