罗比塔法则 lim(2/3.14*arctanX)的x次方,x趋向于无穷,答案是多少

1个回答

  • (x->+oo)lim[(2/pi)arctanx]^x

    =(x->+oo)lime^[xln[(2/pi)arctanx]

    =(x->+oo)lime^{xln[1+[(2/pi)arctanx-1]}

    =(x->+oo)lime^{x[(2/pi)arctanx-1]}

    因为(x->+oo)x[(2/pi)arctanx-1]

    =(x->+oo)[(2/pi)arctanx-1]/(1/x)

    令t=1/x,则t->0+

    (x->+oo)[(2/pi)arctanx-1]/(1/x)

    =(t->0+)[(2/pi)arctan(1/t)-1]/t,为0/0运用罗比达法则

    =(t->0+)(2/pi)(-1/t^2)/[1+1/t^2]

    =(t->0+)-(2/pi)/[t^2+1]

    =-2/pi

    所以

    =(x->+oo)lime^{x[(2/pi)arctanx-1]}

    =e^(-2/pi)