数列{2n-1/2*n},求其前n项的和Sn

2个回答

  • 因为an=(2n-1)/2^n=n/2^(n-1)-1/2^n

    设数列{n/2^(n-1)}前n项和为Tn,数列{1/2^n}前n项和为Pn,

    则Sn=Tn-Pn

    Tn=1+2/2+3/2²+4/2³+.+n/2^(n-1)

    (1/2)Tn=1/2+2/2²+3/2³+.+(n-1)/2^(n-1)+n/2^n

    上两式错项相减得

    (1/2)Tn=1+1/2+1/2²+1/2³+.+1/2^(n-1)-n/2^n

    (1/2)Tn=2[1-(1/2)^n]-n/2^n

    Tn=4-(n+2)/2^(n-1)

    Pn=1/2+1/2²+1/2³+.+1/2^n=1-1/2^n

    Sn=Tn-pn=4-(n+2)/2^(n-1)-(1-1/2^n) = 3-(2n+3)/2^n