Sn+1/(2n+1)-Sn/(2n-1)=1
Sn/(2n-1)=S1+n-1→Sn=(S1+n-1)(2n-1)→Sn=n(2n-1)
an=4n-3
1/√an=2/2√(4n-3)>2/(√4n-3+√4n+1)=(√4n+1-√4n-3)/2
1/√a1 + 1/√a2 +.+ 1/√an>
(√5-√1+√9-√5+√13-√9+...√4n+1-√4n-3)/2
=(√4n+1-1)/2
Sn+1/(2n+1)-Sn/(2n-1)=1
Sn/(2n-1)=S1+n-1→Sn=(S1+n-1)(2n-1)→Sn=n(2n-1)
an=4n-3
1/√an=2/2√(4n-3)>2/(√4n-3+√4n+1)=(√4n+1-√4n-3)/2
1/√a1 + 1/√a2 +.+ 1/√an>
(√5-√1+√9-√5+√13-√9+...√4n+1-√4n-3)/2
=(√4n+1-1)/2