在BC上截取BD=BE,连接OD
根据角平分线的条件可得:
∠BOC=180°-(∠OBC+∠OCB)
=180°-(∠ABC+∠ACB)/2
=180°-(180°-∠A)/2
=180°-(180°-∠A)/2
=180°-(180°-60°)/2
=120°
所以∠BOE=∠COF=60°
根据SAS可知:△BOE≌△BOD
所以∠BOE=∠BOD=60°
所以∠COD=60°
根据ASA可知:△COD≌△COF
由两组全等显然可得OF=OD=OE
所以OE=OF
在BC上截取BD=BE,连接OD
根据角平分线的条件可得:
∠BOC=180°-(∠OBC+∠OCB)
=180°-(∠ABC+∠ACB)/2
=180°-(180°-∠A)/2
=180°-(180°-∠A)/2
=180°-(180°-60°)/2
=120°
所以∠BOE=∠COF=60°
根据SAS可知:△BOE≌△BOD
所以∠BOE=∠BOD=60°
所以∠COD=60°
根据ASA可知:△COD≌△COF
由两组全等显然可得OF=OD=OE
所以OE=OF