反证法,设a1,a2,...,a10是1--10的按顺时针的任意圆排列,相邻的3个数为一组做下列10组和:
a1+a2+a3,a2+a3+a4,...,a8+a9+a10,a9+a10+a1,a10+a1+a2,
如果不存在三个相邻的数,它们的和大于17,即上述每组的和均小于16,则10组和应不大于16*10=160,
但这10组和加起来总数却为(1+2+...+10)*3=165,矛盾,即一定存在三个相邻的数,它们的和大于17.
反证法,设a1,a2,...,a10是1--10的按顺时针的任意圆排列,相邻的3个数为一组做下列10组和:
a1+a2+a3,a2+a3+a4,...,a8+a9+a10,a9+a10+a1,a10+a1+a2,
如果不存在三个相邻的数,它们的和大于17,即上述每组的和均小于16,则10组和应不大于16*10=160,
但这10组和加起来总数却为(1+2+...+10)*3=165,矛盾,即一定存在三个相邻的数,它们的和大于17.