x=a+b√5,y=m+n√5
a,b,m,n∈Z
xy=(a+b√5)(m+n√5)=(am+5bn)+(an+bm)√5
因为a,b,m,n∈Z,所以am+5bn∈Z,an+bm∈Z,所以xy∈M
x/y=(a+b√5)/(m+n√5)=[(a+b√5)(m-n√5]/[(m+n√5)(m-n√5)]
=【(am-5bn)+(mb-an)√5】/(m^2-5n^2)
=(am-5bn)/(m^2-5n^2) + (mb-an)/(m^2-5n^2) *√5
因为(am-5bn)/(m^2-5n^2)不一定属于整数.(mb-an)/(m^2-5n^2) 也不一定属于整数,所以x/y不属于M