应该是求A1/2+A2/3+……+An/(n+1)的和吧
√A1+√A2+……+√An=n^2+3n
n>=2时,
√A1+√A2+……+√A(n-1)=(n-1)^2+3(n-1)
两式相减
√An=n^2+3n-(n-1)^2-3(n-1)=2n+2
An=4(n+1)^2
√A1=1+3=4 A1=16也满足上式
An/(n+1)=4(n+1)
A1/2+A2/3+……+An/(n+1)
=4(2+n+1)n/2=2n(n+3)
应该是求A1/2+A2/3+……+An/(n+1)的和吧
√A1+√A2+……+√An=n^2+3n
n>=2时,
√A1+√A2+……+√A(n-1)=(n-1)^2+3(n-1)
两式相减
√An=n^2+3n-(n-1)^2-3(n-1)=2n+2
An=4(n+1)^2
√A1=1+3=4 A1=16也满足上式
An/(n+1)=4(n+1)
A1/2+A2/3+……+An/(n+1)
=4(2+n+1)n/2=2n(n+3)