可能你计算错误,解题如下:
Res[f(z),∞]=-Res[f(1/z)*1/z^2,0]
将1/z带入上式可得:
f(1/z)*1/z^2=2/z(z^2+1),易知z=0是在z*(z^2+1)的一阶零点,则z=0是2/z*(z^2+1)的一阶极点
所以Res[f(1/z)*1/z^2,0]=lim(z*2/z(z^2+1))其中z|趋近于零,带入可得:
Res[f(1/z)*1/z^2,0]=2
所以Res[f(z),∞]=-2
补充问题回答:
确实是这样的,z=∞即使是函数的可去奇点,函数在z =∞d的留树也未必是0
列入:f(z)=1/z中 z=∞是它的可去起点,但她的留数是-1