f(x)=2sinxcosx-2√3(cosx)^2+√3
=sin2x-2√3*(cos2x+1)/2+√3
=sin2x+√3cos2x
=2sin(2x+π/3)
所以T=2π/2=π
2x+π/3属于[2kπ-2/π,2kπ+2/π]
x属于[kπ-5π/12,kπ+π/12]时单调递增
f(x)=2sinxcosx-2√3(cosx)^2+√3
=sin2x-2√3*(cos2x+1)/2+√3
=sin2x+√3cos2x
=2sin(2x+π/3)
所以T=2π/2=π
2x+π/3属于[2kπ-2/π,2kπ+2/π]
x属于[kπ-5π/12,kπ+π/12]时单调递增