SOS!已知三角形ABC,分别以AB,AC,BC为边作正三角形ABD,正三角形BCE,正三角形ACF.且角ACB=60度

1个回答

  • 作AG垂直于BC,交BC于G,设AB=a,BC=b,CA=c,

    根据海伦公式S=根号下(P(P-a)(P-b)(P-c))

    S三角形BCE+S三角形ACF=((根号3)/4)*b^2+((根号3)/4)*c^2

    =((根号3)/4)*(b^2+c^2)

    三角形ABC中,角ACB=60度,AG=SIN(60度)*c=((根号3)/2)*c,GC=COS(60度)*c=c/2,BG=b-c/2,又根据钩股定理:

    AB^2=BG^2+AG^2,所以:a^2=(b-c/2)^2+(((根号3)/2)*c)^2

    S三角形ABD+S三角形ABC=((根号3)/4)*a^2+(1/2)*b*((根号3)/2)*c

    =((根号3)/4)*((b-c/2)^2+(((根号3)/2)*c)^2+bc)

    =((根号3)/4)*(b^2+c^2)

    所以:S三角形ABD+S三角形ABC=S三角形BCE+S三角形ACF.