解题思路:(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;
(2)不等式|x-3|+|x+4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;
(3)|x-3|+|x+4|≤a对任意的x都成立,即求到3与-4两点距离的和最小的数值.
(1)方程|x+3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.
故解是1和-7;
(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x的值.
在数轴上,即可求得:x≥4或x≤-5.
(3)|x-3|+|x+4|即表示x的点到数轴上与3和-4的距离之和,
当表示对应x的点在数轴上3与-4之间时,距离的和最小,是7.
故a≤7.
点评:
本题考点: 解一元一次不等式.
考点点评: 正确理解题中叙述的题目的意义是解决本题的关键,本题主要考查了绝对值的意义,就是表示距离.