已知△ABC中,D,E分别是AB,AC两边中点.
求证DE平行且等于BC/2
过C作AB的平行线交DE的延长线于F点.
∵CF‖AD
∴∠A=∠ACF
∵AE=CE、∠AED=∠CEF
∴△ADE≌△CFE
∴DE=EF=DF/2、AD=CF
∵AD=BD
∴BD=CF
∴BCFD是平行四边形
∴DF‖BC且DF=BC
∴DE=BC/2
已知△ABC中,D,E分别是AB,AC两边中点.
求证DE平行且等于BC/2
过C作AB的平行线交DE的延长线于F点.
∵CF‖AD
∴∠A=∠ACF
∵AE=CE、∠AED=∠CEF
∴△ADE≌△CFE
∴DE=EF=DF/2、AD=CF
∵AD=BD
∴BD=CF
∴BCFD是平行四边形
∴DF‖BC且DF=BC
∴DE=BC/2