这应该有个前提条件是 z = x + iy 吧
w = y^3-3yx^2+i(x^3-3xy^3+c) = y^3 - 3(ix)y^2 + 3(ix)^2 y - (ix)^3 + ic
= (y - ix)^3 + ic = (-i(x + iy))^3 + ic = (-iz)^3 + ic
= iz^3 + ic = i(z^3 + c)
这应该有个前提条件是 z = x + iy 吧
w = y^3-3yx^2+i(x^3-3xy^3+c) = y^3 - 3(ix)y^2 + 3(ix)^2 y - (ix)^3 + ic
= (y - ix)^3 + ic = (-i(x + iy))^3 + ic = (-iz)^3 + ic
= iz^3 + ic = i(z^3 + c)