要使得当x→1时,[a(x-1)^2+b(x-1)+c-√(x^2+3)]/(x-1)^2的极限存在,则当x→1时,a(x-1)^2+b(x-1)+c-√(x^2+3)]→0,所以c=2,代入得[a(x-1)^2+b(x-1)+c-√(x^2+3)]/(x-1)^2=[a(x-1)^2+b(x-1)+2-√(x^2+3)]/(x-1)^2=[a(x-1)+b-(1+x)/(2+√(x^2+3))]/(x-1),要使得极限存在,则x→1时,a(x-1)+b-(1+x)/(2+√(x^2+3))→0,则b=1/2,代入并化简得:a(x-1)+b-(1+x)/(2+√(x^2+3))=a(x-1)+1/2-(1+x)/(2+√(x^2+3))=[a-3(1+x)/2(2+√(x^2+3))(√(x^2+3)+2x)](x-1),故有当x→1时,a-3(1+x)/2(2+√(x^2+3))(√(x^2+3)+2x)→0,所以a=1/6.
lim(x→1)[a(x-1)^2+b(x-1)+c-√(x^2+3)]/(x-1)^2=0 确定 a.b.c的值 不用
4个回答
相关问题
-
试确定a b的值lim(x^2+1/x+1-ax-b)=1/2
-
设b={x|(2a-1)x^2-2x+1=0},c={-1,-1/2,1/3,1}若b不≦c,求a的所有值
-
2x+3/x(x-1)(x+2)=A/B+B/x-1+C/x+2(A.B.C是常数),求A.B.C的值
-
3x2+2x+5=a(x-1)2+b(x-1)+c,求a、b、c的值
-
1.已知x^2+x-3/(x-1)(x-2)(x-3)=(A/x-1)+(B/x-2)+(C/x-3),求A,B,C的值
-
求lim [( a^x+b^x+c^x)/3]^(1/x) (a,b,c>0) x→0
-
lim x→0时.f(x)/x=2,则lim x→0时,sin4x/f(3x)=多少..A.1 B.1/2 C.2/3
-
(1)3/(x²-1)(x-2),2/(1-x)(x-2)通分 (2)a+b+c/(a-b)(b-c)(c-a
-
1:已知:3X²+2X+4=a(x-1)(x+2)+b(x-1)-c.求a、b、c的值.
-
已知x^2-2/x^3-3x^2+2x=A/x+B/x-1+C/x-2,试确定整数A,B,C的值.要具体过程,