a^2=1
b^2=3
c^2=4
所以左焦点F1(-2,0)
k=tanπ/6=√3/3
y=√3/3(x+2)
代入
3x^2-(1/3)*(x+2)^2=3
9x^2-x^2-4x-4=9
8x^2-4x-13=0
x1+x2=1/2,x1x2=-13/8
(x1-x2)^2=(x1+x2)^2-4x1x2=1/4+13/2=27/4
(y1-y2)^2=[√3/3(x1+2)-√3/3(x2+2)]^2=[√3/3(x1-x2)]^2=1/3*27/4=9/4
所以AB^2=(x1-x2)^2+(y1-y2)^2=9
|AB|=3