解题思路:由旋转的性质可知∠D=∠B,再根据已知条件证明AC∥DE,进而证明∠ACB=∠A,所以△ABC是等腰三角形.
证明:由旋转知∠D=∠B,
∵∠ACD=∠B,
∴∠ACD=∠D,AC∥DE,
∴∠ACB=∠E,
又∵∠A=∠E,
∴∠ACB=∠A,
∴△ABC是等腰三角形.
点评:
本题考点: 旋转的性质;等腰三角形的判定.
考点点评: 本题考查了旋转的性质以及等腰三角形的判定,对于旋转的性质用到最多的是:旋转前、后的图形全等.
解题思路:由旋转的性质可知∠D=∠B,再根据已知条件证明AC∥DE,进而证明∠ACB=∠A,所以△ABC是等腰三角形.
证明:由旋转知∠D=∠B,
∵∠ACD=∠B,
∴∠ACD=∠D,AC∥DE,
∴∠ACB=∠E,
又∵∠A=∠E,
∴∠ACB=∠A,
∴△ABC是等腰三角形.
点评:
本题考点: 旋转的性质;等腰三角形的判定.
考点点评: 本题考查了旋转的性质以及等腰三角形的判定,对于旋转的性质用到最多的是:旋转前、后的图形全等.