过P点作BC边的平行线EF,分别交AB、AC于E、F .
∵ΔABC为等边三角形,
∴∠AFE=∠ABC=60°,
又∵∠APE>∠AFE,∴∠APE>60°.
在ΔAEP中,∵∠APE>∠AEP,∴AE>AP.
∵ΔAEF为等边三角形,∴AE=EF=AF.
∵AE>AP,BE+EP>BP,PF+FC>PC,
∴AE+(EB+EP)+(PF+FC)>AP+PB+PC,
即AB+EF+FC>PA+PB+PC,
∴PA+PB+PC<AB+AC=2AB=2
过P点作BC边的平行线EF,分别交AB、AC于E、F .
∵ΔABC为等边三角形,
∴∠AFE=∠ABC=60°,
又∵∠APE>∠AFE,∴∠APE>60°.
在ΔAEP中,∵∠APE>∠AEP,∴AE>AP.
∵ΔAEF为等边三角形,∴AE=EF=AF.
∵AE>AP,BE+EP>BP,PF+FC>PC,
∴AE+(EB+EP)+(PF+FC)>AP+PB+PC,
即AB+EF+FC>PA+PB+PC,
∴PA+PB+PC<AB+AC=2AB=2