(1)∵∠BAD=∠CAE,∠DAC=∠DAC.
∴∠BAC=∠DAE,
又∵∠ABC=∠ADE.
∴△ABC∽△ADE,(AA)
∴AB:AC=AD:AE°
∵∠BAD=∠CAE
∴△ABD∽ACE(SAS)
(2)∵CD²=AD×BD
∴AD:CD=CD:BD
∵CD⊥AB垂足为D
∴∠ADC=∠CDB=90°
∴△ADC∽△CDB
∴∠ACD=∠DBC,∠CAD=∠DCB
∴∠ACD+∠DCB=∠DBC+∠CAD
而∠ACD+∠DCB+∠DBC+∠CAD=180°
∴∠ACD+∠DCB=∠DBC+∠CAD=90°
即∠ACB=90°,也即△ABC是直角三角形.
如果认同我的解答,请把我投为满意票,