原式=lim(n→∞)[(1/n)/(1+(1/n)^2)+(1/n)/(1+(2/n)^2)+...+(1/n)/(1+(n/n)^2)] (每项上下同时除以n^2)=lim(n→∞)1/n*[1/(1+(1/n)^2)+1/(1+(2/n)^2)+...+1/(1+(n/n)^2)]=∫(0→1)1/(1+x^2)dx (区间[0,1]的分点为...
lim(n→∞){n/(n^2+1)+n/(n^2+2^2)+.+n/(n^2+n^2)}求此式的极限?说明一下那是n除
3个回答
相关问题
-
求极限lim1/n2(√n+√2n+…√n2﹚
-
求极限 lim【1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+……+n/(n^2+n+n)】n
-
求极限:lim(1/n+2^2/n^2+3^2/n^3+...+n^2/n^n) n→∞
-
lim(n→∞)√(3^n)/(n*2^n)和lim(n→∞)√(n^2)/(3^n)求极限,
-
求下列极限:(1)lim 3n^2-2n+1/8-n^3 n→∞ (2)lim 1+2+3+…+n/n^2 n→∞
-
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
-
数列极限 lim[n→∞] (√(n^2+2n)-√(n^2-1))
-
求极限lim(√(n^2-1) -n)/(n-√(n^2+1))的值
-
n趋于无穷 lim n[1/(n^2+1)+1/(n^2+2)+……+1/2n^2] 求极限
-
求极限值求lim(n→∞)(sin(1/n^2)+sin(2/n^2)+…sin(n/n^2))