(1)由条件“|
a|−|
b|=2”知:动点到两定点的距离之差为2,是双曲线,
故方程为x2−
y2
3=1(x≥1),((4分)+(1分)定义域)
(2)设直线l的方程为t(x-2)+y=0或y=-t(x-2)(1分)
由
y=−t(x−2)
x2−
y2
3=1得(t2-3)x2-4t2x+4t2+3=0(1分)
设P(x1,y1),Q(x2,y2)
由条件得
t2−3≠0
△=16t4−4(t2−3)(4t2+3)=36+36t2>0
x1+x2=
4t2
t2−3>0
x1x2=
4t2+3
t2−3>0(只计算△=36+36t2>01分)
解得t2>3即t∈(−∞,−
3)∪(
3,+∞)((1分)
MP •
MQ=(x1+1)(x2+1)+y1y2(1分)
=x1x2+x1+x2+1+t2(x1-2)(x2-2)(1分)
=(t2+1)x1x2-(2t2-1)(x1+x2)+1+4t2(1分)
=
4t4+7t2+3
t2−3−
8t4+4t2
t2−3+1+4t2=0(2分).