(2010•奉贤区一模)已知i,j是x,y轴正方向的单位向量,设a=(x+2)i+yj,b=(x−2)i+yj,且满足|

1个回答

  • (1)由条件“|

    a|−|

    b|=2”知:动点到两定点的距离之差为2,是双曲线,

    故方程为x2−

    y2

    3=1(x≥1),((4分)+(1分)定义域)

    (2)设直线l的方程为t(x-2)+y=0或y=-t(x-2)(1分)

    y=−t(x−2)

    x2−

    y2

    3=1得(t2-3)x2-4t2x+4t2+3=0(1分)

    设P(x1,y1),Q(x2,y2

    由条件得

    t2−3≠0

    △=16t4−4(t2−3)(4t2+3)=36+36t2>0

    x1+x2=

    4t2

    t2−3>0

    x1x2=

    4t2+3

    t2−3>0(只计算△=36+36t2>01分)

    解得t2>3即t∈(−∞,−

    3)∪(

    3,+∞)((1分)

    MP •

    MQ=(x1+1)(x2+1)+y1y2(1分)

    =x1x2+x1+x2+1+t2(x1-2)(x2-2)(1分)

    =(t2+1)x1x2-(2t2-1)(x1+x2)+1+4t2(1分)

    =

    4t4+7t2+3

    t2−3−

    8t4+4t2

    t2−3+1+4t2=0(2分).