有理式不定积分∫x∧4/(1+x∧2)∧2dx

1个回答

  • ∫x^4/(1+x²)² dx

    =∫[1+1/(1+x²)²-2/(1+x²)]dx,用综合除法

    =∫dx+∫dx/(1+x²)²-2∫dx/(1+x²)

    在第二项,令x=tanp,dx=sec²pdp

    =∫dx+∫sec²p/(1+tan²p)²-2∫dx/(1+x²)

    =∫dx+∫sec²p/(sec^4p)-2∫dx/(1+x²)

    =∫dx+∫cos²pdp-2∫dx/(1+x²)

    =∫dx+∫(1+cos2p)/2 dp-2∫dx/(1+x²)

    =∫dx+(1/2)∫dp+(1/4)∫cos2pd(2p)-2∫dx/(1+x²)

    =x+(1/2)p+(1/4)sin2p-2arctanx+C

    =x+(1/2)p+(1/2)sinpcosp-2arctanx+C

    =x+(1/2)arctanx+(1/2)[x/√(1+x²)][1/√(1+x²)]-2arctanx+C

    =x-(3/2)arctanx+(1/2)[x/(1+x²)]

    =x+x/[2(1+x²)]-(3/2)arctanx+C