已知函数y=1/2sin(3x+π/6)+1,(1)求y取得最值时的x的值,(2)求函数的单调递增区间,单调递减区间.

2个回答

  • 1)y取最大值时,3x+π/6=2kπ+π/2(k∈Z) 即x=2kπ/3+π/9(k∈Z);

    y取最小值时,3x+π/6=2kπ-π/2(k∈Z) 即x=2kπ/3-2π/9(k∈Z).

    2)令 2kπ-π/2≤3x+π/6≤2kπ+π/2,得:2kπ/3-2π/3≤x≤2kπ+π/9(k∈Z);

    令 2kπ+π/2≤3x+π/6≤2kπ+π+π/2,得:2kπ/3+π/9≤x≤2kπ/3+4π/9(K∈Z).

    故此函数的单调递增区间为:[2kπ/3-2π/3,2kπ+π/9](K∈Z);

    单调递减区间为:[2kπ/3+π/9,2kπ/3+4π/9](K∈Z).