a(k)=1/C(n,k),k=0,1,2,...,n,当n->∞时Σa(k)得多少?
1个回答
a(0)=a(n)=1,a(1)=a(n-1)=1/n,
a(k)=1/C(n,k)
相关问题
设数列{1n}满足:当n=2k-2(k∈N*)时,1n=n;当n=2k(k∈N*)时,1n=1k;记
证明 Σcos((k/n)π)=0;k=0,1,2,...2n-1
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n](a[n+1]))^1/2 已知a1=0 k属于N 求
lim(n趋于无穷)[Σ(k从1到n)ln(1+k/n)/(n+k/n)]
已知数列a[n]=2n-1,b[n]=2^n,令c1=1,c[2k]=a[2k-1],c[2k+1]=a[2k]+kb[
已知数列{an}满足:当n∈((k−1)k2,k(k+1)2](n,k∈N*)时,an=(-1)k+1•k,Sn是数列{
对于n∈N*,将n表示为n=ak×2k+ak-1×2k-1+…+a1×21+a0×20,当i=k时,ai=1,当0≤i≤
已知函数sum(k,n)=1^k+2^k+3^k…+n^k.计算当k=2,n=5时的结果.
(1)已知k、n∈N * ,且k≤n,求证: k C kn =n C k-1n-1 ;
证明:(n+1)!/k!-n!/(k-1)!=(n-k+1)*n!/k!(k≤n)