下面解答思想用的是极坐标,但不建系:
设过焦点弦与抛物线交于两点,记为A,B
设A到焦点距离为ρ1,B到焦点距离为ρ2,直线AB倾斜角为θ
设抛物线一般方程为y^2=2px,(p为常数)
据抛物线性质--抛物线上任意一点到焦点的距离与到准线的距离一样,得
对A:ρ1=p+ρ1*cosθ → ρ1=p/(1-cosθ) → 1/ρ1=(1-cosθ) /p
对B:ρ2=p+ρ2*cos(θ +π) → ρ2=p/(1+cosθ) → 1/ρ1=(1+cosθ) /p
所以1/ρ1 +1/ρ2=(1+cosθ) /p+(1-cosθ) /p=2/p