的确,题目写错了
f(x)在(a,b)上二阶可导 f''(x)>0 证明 :f(x)dx在a-b上
2个回答
相关问题
-
设f(x)在[a,b]二阶可导,f'(x)>0,f''(x)>0,证明:(b-a)f(a)b)f(x)dx
-
设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]
-
已知f(x)二阶可导 f''(x)+2*f'(x)-f(x)=0 ,f(a)=f(b)=0,则在[a,b]上:
-
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,
-
运用泰勒公式证明不等式设f(x)在[a,b]上一阶可导,在(a,b)上二阶可导,且满足f'(a)=f'(b)=0,证明存
-
函数f(x)在[a,b]上二阶可导,(a)=f(b)=0,F(x)=(x-a)f(x),证(a,b)上至少存在一点c,F
-
设f(x)在[a,b]上连续,f(a)=f(b)=0,f(x)在(a,b)内二阶可导,且f'+(a)>0.求证在(a,b
-
函数f(x)在R上二阶可导,若f''(t)=0;试证明存在a,b(a
-
设f(x)在[0,a]上二阶可导,且f''(x)>0,f(0)=0,试证明g(x)=f(x)\x在[0,a]上单调增加
-
设f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)f(b)<0,f'(c)=0.a