∵∠PCD=∠PBC+∠BPC;
∴2∠PCD=2∠PBC+2∠BPC.
即∠ACD=∠ABC+2∠BPC;
又∠ACD=∠ABC+∠BAC.
∴2∠BPC=∠BAC=70°,∠BPC=35°.
(2)BE-EF=CF.
证明:∵PE∥BC.
∴∠EPB=∠PBC;
又∠EBP=∠PBC.
∴∠EPB=∠EBP,得PE=BE;
同理可证:PF=CF.
所以,BE-EF=PE-EF=PF=CF.
∵∠PCD=∠PBC+∠BPC;
∴2∠PCD=2∠PBC+2∠BPC.
即∠ACD=∠ABC+2∠BPC;
又∠ACD=∠ABC+∠BAC.
∴2∠BPC=∠BAC=70°,∠BPC=35°.
(2)BE-EF=CF.
证明:∵PE∥BC.
∴∠EPB=∠PBC;
又∠EBP=∠PBC.
∴∠EPB=∠EBP,得PE=BE;
同理可证:PF=CF.
所以,BE-EF=PE-EF=PF=CF.