Sn = a1 + a2 + …… a(n-1) + a(n)
S(n-1) = a1 + a2 + …… + a(n-1)
所以
Sn - S(n-1) = an
an = n^2 - 3n - [(n-1)^2 - 3(n-1)]
= n^2 -3n - ( n^2 -5n + 4)
= 2n -4
(2)
an = 2n -4
a(n-1) = 2(n-1) - 4 = 2n -6
an - a(n-1) = 2n - 4 - (2n -6) = 2 为 常数
所以 an 是等差数列
Sn = a1 + a2 + …… a(n-1) + a(n)
S(n-1) = a1 + a2 + …… + a(n-1)
所以
Sn - S(n-1) = an
an = n^2 - 3n - [(n-1)^2 - 3(n-1)]
= n^2 -3n - ( n^2 -5n + 4)
= 2n -4
(2)
an = 2n -4
a(n-1) = 2(n-1) - 4 = 2n -6
an - a(n-1) = 2n - 4 - (2n -6) = 2 为 常数
所以 an 是等差数列