取AB中点P,连接PM.
PM是△ABC的中位线,可得:PM‖AC,PM = (1/2)AC ;
已知,AC⊥BC,PM‖AC,可得:PM⊥BC;
由射影定理可得:PM^2 = PD·PB ,即有:AC^2 = 4·PD·PB .
因为,AD-BD = (AP+PD)-(PB-PD) = 2PD ,AD+BD = AB = 2PB ,
所以,AD^2-BD^2 = (AD-BD)(AD+BD) = (2PD)(2PB) = 4·PD·PB = AC^2 ;
即有:AD^2 = AC^2+BD^2 .