【求助】一道解析几何的题已知直线x*sinα+y*cosβ+m=0(常量α∈(0,90))被圆x^2+y^2=2所截得的

1个回答

  • 解:

    x*sinα+y*cosα+m=0

    y=-(sinα/cosα)*x-m/cosα 代入园方程

    x^2+y^2=2

    x^2+[-(sinα/cosα)*x-m/cosα]^2=2

    (cos^2α+in^2α)*x^2+(2m*sinα)*x+m^2=2cos^2α

    x^2+(2m*sinα)*x+m^2-2cos^2α=0

    解上方程得直线x*sinα+y*cosβ+m=0与圆x^2+y^2=2的交点坐标:

    x=-m*sinα±√(m^2*sin^2α-m^2+2cos^2α)

    x1-x2=2√(m^2*sin^2α-m^2+2cos^2α)

    y1-y2=-2(sinα/cosα)*√(m^2*sin^2α-m^2+2cos^2α)

    已知直线x*sinα+y*cosβ+m=0被圆x^2+y^2=2截得的线段的长为三分之四根号三,则

    (x1-x2)^2+(y1-y2)^2=(4*√3/3)^2=16/3

    4(m^2*sin^2α-m^2+2cos^2α)*(1+sin^2α/cos^2α)=16/3

    (m^2*sin^2α-m^2+2cos^2α)*(sin^2α+cos^2α)=4cos^2α/3

    m^2*sin^2α-m^2+2cos^2α=4cos^2α/3

    -m^2*(1-sin^2α)=-2cos^2α/3

    m^2*cos^2α=2cos^2α/3

    m^2=2/3

    m=±√(2/3)=±√6/3