应该有条件“A、B、C为三角形内角”吧. 如果A+B+C=π,即A、B、C为三角形内角,故:A/2+B/2+C/2=π/2 则:tan(A/2+B/2)=cot(C/2)=1/ tan(C/2),tan(A/2+C/2)=cot(B/2)=1/ tan(B/2) ,tan(B/2+C/2)=cot(A/2)=1/ tan(A/2) 又:tan(A/2+B/2)=[tan(A/2)+tan(B/2)]/[1- tan(A/2) tan(B/2)] 故:tan(A/2) tan(B/2)= 1-[tan(A/2)+tan(B/2)]/ tan(A/2+B/2)=1-[tan(A/2)+tan(B/2)] tan(C/2) 同理:tan(B/2)tan(C/2)= 1-[tan(C/2)+tan(B/2)]/ tan(C/2+B/2)= 1-[tan(C/2)+tan(B/2)] tan(A/2);tan(C/2)tan(A/2)= 1-[tan(C/2)+tan(A/2)]/ tan(C/2+A/2)=1-[tan(C/2)+tan(A/2)] tan(B/2) 故:tan(A/2) tan(B/2)+ tan(B/2)tan(C/2)+ tan(C/2)tan(A/2)= 1-[tan(A/2)+tan(B/2)] tan(C/2)+ 1-[tan(C/2)+tan(B/2)] tan(A/2)+ 1-[tan(C/2)+tan(A/2)] tan(B/2) =3-2tan(A/2) tan(B/2)-2tan(B/2)tan(C/2)-2tan(C/2)tan(A/2) 故:3tan(A/2) tan(B/2)+3tan(B/2)tan(C/2)+3tan(C/2)tan(A/2)=3 故:tan(A/2) tan(B/2)+ tan(B/2)tan(C/2)+ tan(C/2)tan(A/2)= 1
化简tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2拜托各位大神
1个回答
相关问题
-
化简 tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2
-
高三数学题寻解~在三角形ABC中,化简tanA/2tanB/2+tanC/2tanB/2+tanC/2tanA/2
-
在三角形中 求证tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1
-
在三角形ABC中,化简(tanA+tanB+tanC)÷(tanA*tanB*tanC)
-
已知ABC是三角形的内角,求证tanA/2*tanB/2+tanB/2*tanC/2+tanC/2*tanA/2=1
-
在锐角三角形ABC中,(1)求证:tanA+tanB+tanA=tanA.tanB.tanC.(2)
-
tanA+tanB+tanC=3√3 (tanB)^2=tanAtanC 求∠B
-
tanA=2 tanB=3 tanC=1是什么三角形
-
三角形中,tanA+tanB+tanC=tanA .tanB .tanC这个公式怎么证明?
-
已知∠A,∠B,∠C是△ABC的内角.求证:tanA/2×tanB/2+tanB/2×tanC/2+tanC/2×tan