求通解为(x-c1)^2+(y-c2)^2=1微分方程,答案是(y’’)^2=[(y’)^2+1]^3,
x-c1-(1+(y')^2)y'/y"}}}'>

1个回答

  • ∵(x-c1)^2+(y-c2)^2=1

    ==>2(x-c1)+2(y-c2)y'=0 (等式两端对x求导)

    ==>x-c1-(1+(y')^2)y'/y"=0 (等式两端对x求导)

    ∴又上两式,得 x-c1=(1+(y')^2)y'/y".(1)

    x-c2=-(1+(y')^2)/y".(2)

    把(1)和(2)式代入通解,得

    ((1+(y')^2)y'/y")^2+(-(1+(y')^2)/y")^2=1

    ==>(1+(y')^2)^2(y')^2/(y")^2+(1+(y')^2)^2/(y")^2=1

    ==>(1+(y')^2)^2(y')^2+(1+(y')^2)^2=(y")^2

    ==>(1+(y')^2)(1+(y')^2)^2=(y")^2

    ==>(1+(y')^2)^3=(y")^2

    故通解为(x-c1)^2+(y-c2)^2=1微分方程是(y")^2=(1+(y')^2)^3.