椭圆x/45+y/20=1的左右焦点分别为F1,F2, 过中心O与椭圆交于A,B 若△ABF2的面积为20,求直线方程

1个回答

  • 椭圆x/45+y/20=1 知c=sqrt(45-20)=5 F2坐标为(5,0) 设A坐标为(x0,y0),则B的坐标为(-x0,-y0),有x0/45+y0/20=1 (1) △ABF2的面积=5*|y0|=20 |y0|=4 (1)y0=4,x0=3或-3 此时:AB方程为y=4/3x 或y=-4/3x (2)y0=-4,x0=3或-3 此时:AB方程为y=-4/3x 或y=4/3x 所以AB方程为:y=4/3x 或y=-4/3x