(1-1/2^2)(1-1/3^2)...(1-1/n^2)
=(2+1)(2-1)(3+1)(3-1)(4+1)(4-1)…(n+1)(n-1)/(n!)^2
=[3*4*5*…(n+1)]*[1*2*3…(n-1)]/(n!)^2
=(n+1)!(n-1)!/[2*(n!)^2]
=(n+1)*n!*n!/[2*n*(n!)^2
=(n+1)/(2n)
(1-1/2^2)(1-1/3^2)...(1-1/n^2)
=(2+1)(2-1)(3+1)(3-1)(4+1)(4-1)…(n+1)(n-1)/(n!)^2
=[3*4*5*…(n+1)]*[1*2*3…(n-1)]/(n!)^2
=(n+1)!(n-1)!/[2*(n!)^2]
=(n+1)*n!*n!/[2*n*(n!)^2
=(n+1)/(2n)