由条件,有a(n+1)∈(a(n)^2/a(n-1)-1/2,a(n)^2/a(n-1)+1/2),且a(n+1)为正整数,区间(a(n)^2/a(n-1)-1/2,a(n)^2/a(n-1)+1/2)的长度小于1,所以a(n+1)有唯一解.又由数学归纳法易证得:a(n)为a(n-1)的倍数,a(n)^2=a(n+1)a(n-1),a(n)/a(n-1)=a(n-1)/a(n-2)=……=a(2)/a(1)=3,a(1)=2,所以a(n)=2*3^(n-1),代入不等式,3T(n+1)-T(n+1)=3/2+∑(2i+1)/2*3^(i-1) {0
设正整数数列{an}满足a1=2,a2=6,当n≥2时,有| (An)^2-A(n-1)A(n+1) |<1/2A(n-
2个回答
相关问题
-
已知数列an满足a1=1/5,且当n>=2,n属于正整数时,有(a(n-1))/(an)=(2a(n-1)+1)/(1-
-
已知数列{An}满足A1=1/5,切且当n>1,n∈正整数时,A(n-1)/An=[2A(n-1)+1]/(1-2An)
-
已知数列{an}满足a1=5,a2=5,a(n+1)=an+6a(n-1),(n≥2,n属于正整数),若数列{a(n+1
-
数列An满足A1=29,An-A(n-1)=2n-1(n≥2,n∈整数)
-
有关 例2设数列{an}满足a(n+1)=(an)²-n(an)+1,n=1,2,3,…(1)当a1=2时,求
-
设数列{an}满足a(n+1)=an2-nan+1,n=1,2,3,…当a1=2时,求an.
-
已知数列{an}满足a1=2,a2=2,a(n+2)=[a(n+1)+an]/2,n∈整数,令bn=a(n+1)-an,
-
已知数列{an}满足a(n+1)/an=(n+2)/n(n为正整数),a1=1,则an=?
-
设数列an满足a1=2,an+1=3an-2(n为正整数)
-
已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*),设bn=1a