(I)|
an|=
1
2
(xn−1−yn−1)2+(xn−1+yn−1)2
=
2
2•
x2n−1+
y2n−1=
2
2|
an−1|,(n≥2),首项|
a1|=
x21+
y21≠0,
|
an|
|
an−1|=
2
2为常数,∴{|
an|}是等比数列.
(II)
an−1•
an=(xn−1,yn−1)•
1
2(xn−1−yn−1,xn−1+yn−1)=
1
2(
x2n−1+
y2n−1)=
1
2|
an−1|2,cos<
an−1,
an>=
an−1•
an
|
an−1||
an|=
1
2|
an−1|2
|
an−1|•
2
2|
an−1|=
2
2,∴
an−1与
an的夹角为
π
4.
(III)