:∫[0,1]((ln(1+x))/(1+x^2)dx

1个回答

  • ∫[ln(1+x)/(1+x²)]dx=∫[ln(1+tanz)/(1+tan²z)]*sec²zdz (令x=tanz)

    =∫ln(1+sinz/cosz)dz

    =∫ln[(sinz+cosz)/cosz]dz

    =∫[ln(sinz+cosz)-ln(cosz)]dz

    =∫ln(sinz+cosz)dz-∫ln(cosz)dz

    =∫ln[√2sin(z+π/4)]dz-∫ln(cosz)dz

    =∫ln(√2)dz+∫ln[sin(z+π/4)]dz-∫ln(cosz)dz

    =(π/4)ln(√2)+∫ln[sin(π/2-y)]d(-y)-∫ln(cosz)dz

    (在第二个积分中,令z=π/4-y)

    =πln2/8+∫ln(cosy)dy-∫ln(cosz)dz

    =πln2/8+∫ln(cosz)dz-∫ln(cosz)dz

    (在第一个积分中,令z=y)

    =πln2/8