一道高数问题设f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存
3个回答
感觉楼上说的有点不清楚,我来补充一下吧
如果f(0)f(1)f(2)不同时为1,那么
max{f(0),f(1),f(2)}>1,
min{f(0),f(1),f(2)}
相关问题
设f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1,试证明.必存在ξ∈(
数一,一道证明,设函数f(x)在【0,3】上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1,
设函数f(x)在[0,3]上连续,在(0,3)可导,f(0)+f(1)+f(2)=3,f(3)=1 求证必存在n(0,3
设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=f(0)=0,f(1/2)=1,试证:至少存在一个§€(0
设f(x)在[0,1]上连续且可导,又f(0)=0,0≤f'(x)≤1 试证:[ ∫^(0,1)f(x)dx]^2≥∫^
求助一道中值定理的题目.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,试证ξf'(ξ)+2f(ξ)=
1.函数f(x)在[0,1]连续,在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,试证:
一道简单的高数题.设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0,f(0.5)=1.试
设函数f(x)在【0,1】上连续,在(0,1)内可导,且3∫f(x)dx=f(0),(上限为1,下限为2/3),证明:
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足f(1)=3∫ e^(1-x^2) f(x) dx