原方程 y''-3y'+2y=x(e^x) 对应的齐次方程为 y''-3y'+2y=0
其特征方程为 r²-3r+2=0
特征根为 r(1)=1,r(2)=2
所以齐次方程的解为 y(1)=C(1)(e^x)+C(2)[e^(2x)];
由于1是特征根,
设原方程的特解为 y(2)=(ax²+bx)(e^x)
则
y'(2)=(2ax+b)(e^x)+(ax²+bx)(e^x)
=[ax²+(2a+b)x+b](e^x)
y"(2)=[2ax+(2a+b)](e^x)+[ax²+(2a+b)x+b](e^x)
=[ax²+(4a+b)x+(2a+2b)](e^x)
代入原方程,则
[ax²+(4a+b)x+(2a+2b)](e^x)-3[ax²+(2a+b)x+b](e^x)+2(ax²+bx)(e^x)=x(e^x)
即 (4a+b)-3(2a+b)+2b=1
(2a+2b)-3b=0
解得
a=-1/2,b=-1
即特解为 y(2)=[-(1/2)x²-x](e^x)
于是,原方程的通解为
y=y(1)+y(2)
=C(1)(e^x)+C(2)[e^(2x)]+[-(1/2)x²-x](e^x)
=[-(1/2)x²-x+C(1)](e^x)+C(2)[e^(2x)]
——未验算,请谨慎