求解一道概率题设随机变量X1,X2,…,Xn相互独立,D(Xi)=δi^2,δi不等于0,i=1,2…,n.又∑(i从1

1个回答

  • 因为X1,X2,…,Xn相互独立,所以

    D(∑(i从1到n)aiXi) = ∑(i从1到n)D(aiXi) = ∑(i从1到n)ai^2 D(Xi) = ∑(i从1到n)ai^2 δi^2

    设 L(a1,...,an,λ) = ∑(i从1到n)(aiδi)^2+λ(∑(i从1到n)ai-1),

    当给定 a1,...,a(i-1),a(i+1),...,an,λ时,L是ai的二次函数,且开口向上.

    于是在最小值处,有:

    下面用 dL/dai 表示偏导数.

    dL/dai = 2ai δi^2 + λ = 0 ,i = 1,...,n

    ==> -λ/2 = a1 δ1^2 = a1/(1/ δ1^2) = .= an/(1/ δn^2)

    = (a1 + .+an)/((1/ δ1^2) + ...+(1/ δn^2))

    = 1/ ((1/ δ1^2) + ...+(1/ δn^2))

    ==>

    ai = -λ / (2δi^2) = 1/δi^2 * (-λ/2)= 1/δi^2 / ((1/ δ1^2) + ...+(1/ δn^2)) ,i = 1,2,...,n

    当 ai ,i=1,...,n,为上值时,方差最小.