f(x)=lnx+x,定义域为x>0
f(x)在定义域为单调增函数
因此有:f(a)=ka,f(b)=kb
即:lna+a=ka
lnb+b=kb
即a,b为方程lnx+x=kx的两个不同根
k=1+(lnx)/x=g(x)
g'(x)=(1-lnx)/x^2=0,得极大值点x=e
g(x)的极大值为:g(e)=1+1/e
g(0+)=-∞,g(+∞)=1
因此当1
f(x)=lnx+x,定义域为x>0
f(x)在定义域为单调增函数
因此有:f(a)=ka,f(b)=kb
即:lna+a=ka
lnb+b=kb
即a,b为方程lnx+x=kx的两个不同根
k=1+(lnx)/x=g(x)
g'(x)=(1-lnx)/x^2=0,得极大值点x=e
g(x)的极大值为:g(e)=1+1/e
g(0+)=-∞,g(+∞)=1
因此当1