几道求不定积分的题,1,∫ 1/( (x-2)^2*(x-3) ) dx2,∫ sinx * sin2x * sin3x

1个回答

  • 1、

    设1/[(x-2)²(x-3)] = A/(x-2)²+B/(x-2)+C/(x-3)

    解得:A=-1,B=-1,C=1

    ∫dx/[(x-2)²(x-3)]

    =-∫dx/(x-2)²-∫dx/(x-2)+∫dx/(x-3),有理积分法

    =1/(x-2)-ln|x-2|+ln|x-3| + C

    =1/(x-2)+ln|(x-3)/(x-2)| + C

    2、

    ∫(sinx)(sin2x)(sin3x) dx

    =(1/2)∫(sin3x)(cosx-cos3x) dx,前两项,积化和差

    =(1/2)∫sin3xcosx dx - (1/2)∫sin3xcos3x dx

    =(1/4)∫(sin2x+sin4x) - (1/6)∫sin3xcos3x d(3x),前面的部分,积化和差

    =(1/8)∫sin2x d(2x) + (1/16)∫sin4x d(4x) + (1/6)∫cos3x d(cos3x)

    =(-1/8)cos2x - (1/16)cos4x + (1/12)cos²(3x) + C

    =(-1/8)cos2x - (1/16)cos4x + (1/24)cos6x + C'

    3、

    (x²-5x+9)/(x²-5x+6)=(x²-5x+6+3)/(x²-5x+6)=1+3/[(x-2)(x-3)]

    设3/[(x-2)(x-3)]=A/(x-2)+B/(x-3)

    解得:A=-3,B=3

    ∫(x²-5x+9)/(x²-5x+6) dx

    =∫ dx - 3∫dx/(x-2) + 3∫dx/(x-3),有理积分法

    =x - 3ln|x-2| + 3ln|x-3| + C

    =x + 3ln|(x-3)/(x-2)| + C

    4、

    令cosx/[sinx(1+sinx)²]=A/sinx + B/(1+sinx) + C/(1+sinx)²

    A=cosx,B=-cosx,C=-cosx

    ∫cosx/[sinx(1+sinx)²] dx

    =∫cosx/sinx dx - ∫cosx/(1+sinx) dx - ∫cosx/(1+sinx)² dx,有理积分法

    =∫d(sinx)/sinx - ∫d(sinx+1)/(1+sinx) - ∫d(sinx+1)/(1+sinx)²

    =ln|sinx| - ln|1+sinx| -[-1/(1+sinx)²] + C

    =ln|sinx/(1+sinx| + 1/(1+sinx)² + C