解前分析:
逐个击破.
∵ (√3) 的4次方 = 9
∴ log(√3) (9) = 4
log9 27
= lg27 ÷ lg9
= lg(3³) ÷ lg(3²)
= 3lg3 ÷ 2lg3
= 3/2
(¼)^log4 1/16
先观察指数:
log(4) (1/16)
= - 2
∴(¼)^log4 1/16
= (¼)的 (- 2)次方
= 4²
= 16
∵log(4) (1/16)
= log(4) (4的负2次方)
= - 2
∴(¼)^log(4) (1/16)
= (¼) 的(- 2)次方
= 4²
= 16
∴原式
= log(√3) (9) + log(9) (27) +(¼)^log(4) (1/16)
= log(√3)(√3 的4次方) + log(3²)(3³) + 16
= 4 + (3/2) + 16
= 21.5
如果“统一成常用对数”,
原式
= [ lg(√3 的4次方) ] / lg(√3) + lg(3³) / log(3²) + (¼) 的[ (lg(1/16) / lg(4)) ]次方
= [ 4 × lg(√3) ] / lg(√3) + (3/2) + (¼) 的[ (-2) × (lg(4) ] / lg(4)) 次方
= 4 + (3/2) + (¼) 的(- 2)次方
= = 4 + (3/2) + 16
= 21.5