解题思路:(1)根据勾股定理求出AC,证△ACB∽△ADE,得出[BC/DE]=[AC/AD]=[AB/AE],代入求出DE=6,AE=10,过O作OQ⊥EF于Q,证△EQO∽△EDA,代入求出OQ即可;
(2)连接EG,求出EG⊥CD,求出CE=ED,根据等腰三角形的性质求出即可.
(1)∵∠ACB=90°,AB=5,BC=3,由勾股定理得:AC=4,
∵AB=5,BD=3,
∴AD=8,
∵∠ACB=90°,DE⊥AD,
∴∠ACB=∠ADE,
∵∠A=∠A,
∴△ACB∽△ADE,
∴[BC/DE]=[AC/AD]=[AB/AE]
∴[3/DE]=[4/8]=[5/AE]
∴DE=6,AE=10,
即⊙O的半径为3;
过O作OQ⊥EF于Q,
则∠EQO=∠ADE=90°,
∵∠QEO=∠AED,
∴△EQO∽△EDA,
∴[EO/AE]=[OQ/AD],
∴[3/10]=[OQ/8],
∴OQ=2.4,
即圆心O到弦EF的距离是2.4;
(2)连接EG,
∵AE=10,AC=4,
∴CE=6,
∴CE=DE=6,
∵DE为直径,
∴∠EGD=90°,
∴EG⊥CD,
∴点G为CD的中点.
点评:
本题考点: 圆的综合题.
考点点评: 本题考查了圆周角定理,相似三角形的性质和判定,等腰三角形性质的应用,主要考查学生综合运用性质进行推理和计算的能力.