如图1,抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),与y轴相交于点C,⊙O1为△ABC的外接

1个回答

  • (1)

    A(-3, 0): 9a - 3b + 3 = 0

    B(-1, 0): a-b+ 3 = 0

    a = 1, b = 4

    y = x² +4x + 3 = (x + 2)² - 1

    对称轴x = -2

    C(0, 3)

    O₁(-2, c), O₁B² = O₁C²

    (-2+ 1)² + (c - 0)² = (-2 - 0)² + (c - 3)²

    c = 2

    O₁(-2, 2)

    O₁C斜率p= (3 - 2)/(0 + 2) = 1/2

    O₁B斜率q = (2 - 0)/(-2 + 1) = -2

    pq = -1

    △BO₁C为直角三角形

    (2) O₁(-2, 2)

    (3)

    EF与 AB平行, 且EF = AB = (-1)- (-3) = 2

    设F(f, f² +4f + 3), 则E(-2, f² +4f + 3)

    |f + 2| = 2

    f = 0, F(0, 3)

    f = -4, F(-4, 3)