f(x)=sin(π-wx)coswx+cos²wx=sinwxcoswx+(cos2wx+1)/2
=(sin2wx)/2+(cos2wx+1)/2
=(√2/2)sin(2wx+π/4)+1/2
2π/2w=π/w=π,
w=1
2.f(x)=(√2/2)sin(2x+π/4)+1/2
g(x)=(√2/2)sin(4x+π/4)+1/2
T=2π/4=π/2
x∈[0,π/16]
4x+π/4∈[π/4,π/2]
最小值g(0)=1
f(x)=sin(π-wx)coswx+cos²wx=sinwxcoswx+(cos2wx+1)/2
=(sin2wx)/2+(cos2wx+1)/2
=(√2/2)sin(2wx+π/4)+1/2
2π/2w=π/w=π,
w=1
2.f(x)=(√2/2)sin(2x+π/4)+1/2
g(x)=(√2/2)sin(4x+π/4)+1/2
T=2π/4=π/2
x∈[0,π/16]
4x+π/4∈[π/4,π/2]
最小值g(0)=1